Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Chinese Journal of Nosocomiology ; 33(4):522-526, 2023.
Article in Chinese | GIM | ID: covidwho-20244455

ABSTRACT

OBJECTIVE: To investigate the expressions of peripheral blood microRNA-21(miR-21) and transforming growth factor-beta(TNF-beta)/Smad signaling transduction pathway in patients with bronchial asthma complicated with respiratory virus infection. METHODS: Totally 109 patients with asthma complicated with respiratory virus infection(study group) and 104 patients without virus infection(control group) in the Third People's Hospital of Gansu Province between Feb.2019 and Feb.2021 were selected for the cross-sectional study. The basic data of the two groups were collected, and parameters including vital signs, lung function, peripheral blood miR-21 and TGF-beta/Smad signaling pathway proteins were measured. According to the guidelines, the patients of the two groups were divided into acute exacerbation phase and stable phase. The examination results of each group were compared and the levels of peripheral blood miR-21 and TGF-beta/Smad signaling pathway proteins expression of patients with asthma complicated with respiratory virus infection were analyzed. RESULTS: In study group, the proportion of respiratory virus infection among 109 patients was 33.94% for influenza virus, 23.85% for human rhinovirus, 19.27% for respiratory syncytial virus, 10.09% for parainfluenza virus, 6.42% for adenovirus, 4.59% for human coronavirus and 1.83% for human metapneumovirus respectively. The proportion of patients with acute exacerbation phase in the study group was higher than that in the control group, and the levels of peripheral blood miR-21, TGF-beta1, Smad7, pSmad2 and pSmad3 were higher than those in control group(P<0.05). The levels of miR-21, TGF-beta1, Smad2, Smad3, Smad7, pSmad2 and pSmad3 in peripheral blood of patients with acute exacerbation phase of asthma were higher than those of patients with stable phase of asthma(P<0.05). There were no statistical differences in peripheral blood miR-21, TGF-beta1, Smad2, Smad3, Smad7, pSmad2 and pSmad3 levels in asthma patients with different virus infections. CONCLUSION: Early respiratory virus infections might lead to increased expression of peripheral blood miR-21 and increased activation of TGF-beta/Smad signaling pathway in patients with asthma, which played an important role in acute attack of asthma.

2.
J Med Virol ; 95(6): e28861, 2023 06.
Article in English | MEDLINE | ID: covidwho-20245033

ABSTRACT

The seasonal human coronaviruses (HCoVs) have zoonotic origins, repeated infections, and global transmission. The objectives of this study are to elaborate the epidemiological and evolutionary characteristics of HCoVs from patients with acute respiratory illness. We conducted a multicenter surveillance at 36 sentinel hospitals of Beijing Metropolis, China, during 2016-2019. Patients with influenza-like illness (ILI) and severe acute respiratory infection (SARI) were included, and submitted respiratory samples for screening HCoVs by multiplex real-time reverse transcription-polymerase chain reaction assays. All the positive samples were used for metatranscriptomic sequencing to get whole genomes of HCoVs for genetical and evolutionary analyses. Totally, 321 of 15 677 patients with ILI or SARI were found to be positive for HCoVs, with an infection rate of 2.0% (95% confidence interval, 1.8%-2.3%). HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1 infections accounted for 18.7%, 38.3%, 40.5%, and 2.5%, respectively. In comparison to ILI cases, SARI cases were significantly older, more likely caused by HCoV-229E and HCoV-OC43, and more often co-infected with other respiratory pathogens. A total of 179 full genome sequences of HCoVs were obtained from 321 positive patients. The phylogenetical analyses revealed that HCoV-229E, HCoV-NL63 and HCoV-OC43 continuously yielded novel lineages, respectively. The nonsynonymous to synonymous ratio of all key genes in each HCoV was less than one, indicating that all four HCoVs were under negative selection pressure. Multiple substitution modes were observed in spike glycoprotein among the four HCoVs. Our findings highlight the importance of enhancing surveillance on HCoVs, and imply that more variants might occur in the future.


Subject(s)
Coronavirus 229E, Human , Coronavirus NL63, Human , Coronavirus OC43, Human , Humans , Seasons , Betacoronavirus , China , Coronavirus OC43, Human/genetics
3.
Viruses ; 15(1)2022 Dec 21.
Article in English | MEDLINE | ID: covidwho-2308412

ABSTRACT

In addition to emerging coronaviruses (SARS-CoV, MERS, SARS-CoV-2), there are seasonal human coronaviruses (HCoVs): HCoV-OC43, HCoV-229E, HCoV-NL63 and HCoV-HKU1. With a wide distribution around the world, HCoVs are usually associated with mild respiratory disease. In the elderly, young children and immunocompromised patients, more severe or even fatal respiratory infections may be observed. In Africa, data on seasonal HCoV are scarce. This retrospective study investigated the epidemiology and genetic diversity of seasonal HCoVs during nine consecutive years of influenza-like illness surveillance in Senegal. Nasopharyngeal swabs were collected from ILI outpatients or from SARI hospitalized patients. HCoVs were diagnosed by qRT-PCR and the positive samples were selected for molecular characterization. Among 9337 samples tested for HCoV, 406 (4.3%) were positive: 235 (57.9%) OC43, 102 (25.1%) NL63, 58 (14.3%) 229E and 17 (4.2%) HKU1. The four types circulated during the study period and a peak was noted between November and January. Children under five were the most affected. Co-infections were observed between HCoV types (1.2%) or with other viruses (76.1%). Genetically, HCoVs types showed diversity. The results highlighted that the impact of HCoVs must be taken into account in public health; monitoring them is therefore particularly necessary both in the most sensitive populations and in animals.


Subject(s)
COVID-19 , Coronavirus OC43, Human , Influenza, Human , Pneumonia , Respiratory Tract Infections , Child , Humans , Child, Preschool , Aged , Influenza, Human/epidemiology , Senegal/epidemiology , Retrospective Studies , SARS-CoV-2 , Coronavirus OC43, Human/genetics
4.
Jordan Journal of Biological Sciences ; 16(1):131-136, 2023.
Article in English | Scopus | ID: covidwho-2271931

ABSTRACT

Fecal specimens collected from patients with acute gastroenteritis among the Northern Jordan population were screened for human coronaviruses-229E, human coronaviruses-NL63, human coronaviruses-HKU1, and human coronaviruses-OC43 by Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) and PCR. Out of the 401 analyzed specimens, 42(10.5%) specimens were found positive for at least one human coronavirus. Of the 42 specimens, 57.1% were positive for human coronaviruses-229E, 33.3% for human coronaviruses-NL63, and 9.5% for human coronaviruses-HKU1. The human coronaviruses-OC43 virus was not detected in the tested specimens. None of the fecal specimens collected from healthy individuals were found positive for human coronavirus strains. No significant association was found between human coronavirus infection and gender (P>0.05). Most infected cases were in the age group >60 years old (23.8%), followed by the age group 0–1-year-old (19.0%). Most cases of human coronaviruses were detected in the winter season (42.9%) with a significant association recorded with human coronaviruses-NL63 (P = 0.006), and the lowest in the spring season (4.8%).The relationship between the human coronavirus-229E and fever (P = 0.04) and between human coronavirus-HKU1 and weakness (P = 0.04) were significant. No association (P> 0.05) between respiratory disease and positive human coronaviruses fecal specimens. The average symptom duration was 2-3 days. Among the viral-positive specimens, 38.1% were under antibiotic treatment. The provided data will help in patient care control of viral acute gastroenteritis © 2023 Jordan Journal of Biological Sciences. All rights reserved

5.
Chinese Journal of Nosocomiology ; 32(23):3643-3647, 2022.
Article in English, Chinese | GIM | ID: covidwho-2270082

ABSTRACT

OBJECTIVE: To investigate and analyze multiple detection of 13 kinds of viruses in 500 children with acute respiratory tract infection in Hami of Xinjiang. METHODS: A total of 500 children with acute respiratory tract infection treated in the hospital between Jan 2018 and Jan 2021 were enrolled. Thirteen kinds of respiratory infection viruses including human respiratory syncytial virus(RSV), human rhinovirus(hRV), respiratory adenovirus(AdV), influenza A and B viruses(Inf A, Inf B), parainfluenza virus(PIV 1/2/3), human enterovirus(hEV), human metapneumovirus(hMPV), human coronavirus(hCoV 229E/OC43) and human Boca virus(hBoV) were detected by multiple reverse transcription polymerase chain reaction(RT-PCR) amplification and capillary electrophoresis. And the results were compared with those by direct sequencing method. RESULTS: Of the 500 samples, 379 samples were positive(75.80%), and the top three detection rates were RSV(19.40%), hRV(16.00%) and Inf B(12.60%). The differences in positive rates of the respiratory virus among <1 year group, 1-3 years group and >3 years group were significant(84.97%, 77.47%, 65.45%)(P<0.05). The detection rate of RSV was the highest in <1 year group, and the detection rates of Inf A and Inf B were the highest in >3 years group. The differences in positive rates of respiratory viruses among the spring group, summer group, autumn group and winter group were significant(74.05%, 63.73%, 77.24%, 84.03%)(P<0.05). The detection rates of RSV, PIV 3, and hMPV were the highest in the winter group, and detection rate of AdV was the highest in spring group. CONCLUSION: RSV is the main infection virus in children with acute respiratory infection in Hami of Xinjiang. The distribution of respiratory viruses is related to age and onset season in children.

6.
Chinese Journal of Nosocomiology ; 33(5):791-795, 2023.
Article in English, Chinese | GIM | ID: covidwho-2287670

ABSTRACT

OBJECTIVE: To investigate the prevalence of respiratory tract viruses infections in sentinel hospitals of Guangming District, Shenzhen, from 2018 to 2021. METHODS: A total of 1 183 influenza-like patients who were treated in University of Chinese Academy of Sciences Shenzhen Hospital(Guangming District) from Jan 2018 to Dec 2021 were recruited as the research subjects. The respiratory viruses that were isolated from throat swab specimens were detected by real-time fluorescent quantitative PCR, and the prevalence of the infections was observed. RESULTS: Among the throat swab specimens that were collected from the 1 183 influenza-like patients, 45.48%(538/1183) were tested positive for respiratory viruses. Among the 538 positive samples, 533 were single infection, and 5 were mixed infection;the patients with influenza virus infection accounted for 77.51%(417 cases), higher than the patients with infections of other viruses [adenovirus infection(6.51%), respiratory syncytial virus infection(1.30%), human metapneumovirus infection(1.67%), rhinovirus infection(6.88%), coronavirus infection(1.86%), parainfluenza virus infection(3.16%), boca virus infection(0.19%), P<0.05]. The incidence of respiratory viruses infections was higher in winter than in spring, summer and autumn(P<0.05), the proportion of the influenza virus was higher than that of other viruses in winter(P<0.05). The population aged between 26 and 40 years old was dominant among the patients with influenza virus infection, and the infection rate of the age group was higher than that of other age groups(P<0.05). The population aged between 26 and 40 years old was dominant among the patients with coronavirus infection, while the population aged less than 15 years old was dominant among the patients with infections of other respiratory viruses;the patients aged less than 15 years accounted for 59.46%(22 cases) among the patients with rhinovirus infection;the patients aged less than 5 years old accounted for 42.86%(15 cases) among the patients with adenovirus infection. There was no significant difference in the proportion of the patients with respiratory viruses infection between genders. CONCLUSION: The influenza virus is dominant among the viruses causing the respiratory tract infection, which is prevalent in winter. The incidence of respiratory tract infections is relatively high among the patients aged between 26 and 40 years old but is not associated with the gender.

7.
Pathogens ; 10(12)2021 Nov 27.
Article in English | MEDLINE | ID: covidwho-2264125

ABSTRACT

Human coronaviruses (HCoVs) have become evident sources of human respiratory infections with new emerging HCoVs as a significant cause of morbidity and mortality. The common four coronaviruses (229E, HKU1, NL63, and OC43) are known to cause respiratory illness in humans, but their clinical impact is poorly described in the literature. We analyzed the data of all patients who tested positive for at least one of the four HCoVs from October 2015 to January 2020 in a tertiary care center. HCoVs were detected in 1062 specimens, with an incidence rate of 1.01%, out of all documented respiratory illnesses. Detection of these viruses was reported sporadically throughout the years, with a peak of occurrence during winter seasons. OC43 had the highest incidence (53.7%), followed by NL63 (21.9%), HKU1 (12.6%), and 229E (11.8%). Most of these infections were community-acquired, with symptoms of both upper and lower respiratory tract. Co-detection with other viruses were observed, mostly with rhinovirus. 229E was the most frequent (26.4%) HCoV in patients requiring intensive care, while NL63 and 229E were the most common in patients requiring invasive ventilation. The highest 30-day mortality rate was observed in patients infected with 229E (6.4%). HCoVs are common circulating pathogens that have been present for decades, with 229E being the most virulent in this study cohort.

8.
Anal Bioanal Chem ; 413(9): 2311-2330, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-2251875

ABSTRACT

The current global fight against coronavirus disease (COVID-19) to flatten the transmission curve is put forth by the World Health Organization (WHO) as there is no immediate diagnosis or cure for COVID-19 so far. In order to stop the spread, researchers worldwide are working around the clock aiming to develop reliable tools for early diagnosis of severe acute respiratory syndrome (SARS-CoV-2) understanding the infection path and mechanisms. Currently, nucleic acid-based molecular diagnosis (real-time reverse transcription polymerase chain reaction (RT-PCR) test) is considered the gold standard for early diagnosis of SARS-CoV-2. Antibody-based serology detection is ineffective for the purpose of early diagnosis, but a potential tool for serosurveys, providing people with immune certificates for clearance from COVID-19 infection. Meanwhile, there are various blooming methods developed these days. In this review, we summarise different types of coronavirus discovered which can be transmitted between human beings. Methods used for diagnosis of the discovered human coronavirus (SARS, MERS, COVID-19) including nucleic acid detection, gene sequencing, antibody detection, antigen detection, and clinical diagnosis are presented. Their merits, demerits and prospects are discussed which can help the researchers to develop new generation of advanced diagnostic tools for accurate and effective control of human coronavirus transmission in the communities and hospitals.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus/isolation & purification , Animals , Biosensing Techniques/methods , COVID-19/diagnosis , COVID-19 Testing/methods , Enzyme-Linked Immunosorbent Assay/methods , Humans , Immunoassay/methods , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Molecular Diagnostic Techniques/methods , Real-Time Polymerase Chain Reaction/methods , Severe acute respiratory syndrome-related coronavirus/isolation & purification , SARS-CoV-2/isolation & purification , Serologic Tests/methods , Severe Acute Respiratory Syndrome/diagnosis
9.
Journal of Tropical Medicine ; 22(8):1043-1048, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-2263409

ABSTRACT

Objective: To explore the mechanism of Xiyanping injection in the treatment of human coronavirus infection based on network pharmacology and molecular docking method. Methods: The active components and targets of Xiyanping injection were screened by CNKI, SwissTarget Prediction and Targetnet. The Human Gene Database (Genecards), Online Human Mendelian Inheritance Database (OMIM) and Therapeutic Target Database (TTD) were searched to predict disease targets. Venny 2.1.0, Cytoscape 3.8.2 and STRING11.5 were used to construct "drug target-disease target Venn diagram", "drug-active ingredient-target-disease network" and "protein interaction network". The Database for Annotation, Visualization and Integrated Discovery (DAVID) and Bioinformatics, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) were used for the enrichment analysis and visualization. Finally, molecular docking was performed by AutoDock Vina and PyMOL. Results: The active ingredient of Xiyanping injection was andrographolide, andrographolide had 140 targets, 1 812 potential targets of human coronavirus infection, and 35 common targets of Xiyanping and human coronavirus infection;PPI network analysis and molecular docking showed that MAPK9, MAPK8, TYK2, CDKI and interleukin (IL)-6 among the 35 common targets might be the key targets of Xiyanping injection in the treatment of human coronavirus infection. Lactone was tightly bound;enrichment analysis showed that key targets were closely related to protein phosphorylation, cell signal transduction, and gene expression regulation, and key targets were NOD-like receptor signaling pathway, Toll-like receptor signaling pathway, FOXO signaling pathway, there was also an important link in the TNF signaling pathway. Conclusion: The active ingredient of Xiyanping injection was andmgrapholide, and its treatment of human coronavirus infection might affect NOD-like receptor signaling pathway, Toll-like receptor signaling pathway and FOXO signaling by inhibiting the activities of MAPK9, MAPK8, TYK2, CDK1 and IL-6. The activation of the pathway and the TNF signaling pathway regulates protein phosphorylation, cell signal transduction and gene expression, thereby exerting anti-inflammatory effects.

10.
Int J Infect Dis ; 131: 183-192, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2268084

ABSTRACT

OBJECTIVES: We assessed the prevalence of immunoglobulin G (IgG) and IgM against four endemic human coronaviruses and two SARS-CoV-2 antigens among vaccinated and unvaccinated staff at health care centers in Uganda, Sierra Leone, and the Democratic Republic of Congo. METHODS: The government health facility staff who had patient contact in Goma (Democratic Republic of Congo), Kambia District (Sierra Leone), and Masaka District (Uganda) were enrolled. Questionnaires and blood samples were collected at three time points over 4 months. Blood samples were analyzed with the Luminex MAGPIXⓇ. RESULTS: Among unvaccinated participants, the prevalence of IgG/IgM antibodies against SARS-CoV-2 receptor-binding domain or nucleocapsid protein at enrollment was 70% in Goma (138 of 196), 89% in Kambia (112 of 126), and 89% in Masaka (190 of 213). The IgG responses against endemic human coronaviruses at baseline were not associated with SARS-CoV-2 sero-acquisition during follow-up. Among the vaccinated participants, those who had evidence of SARS-CoV-2 IgG/IgM at baseline tended to have higher IgG responses to vaccination than those who were SARS-CoV-2 seronegative at baseline, controlling for the time of sample collection since vaccination. CONCLUSION: The high levels of natural immunity and hybrid immunity should be incorporated into both vaccination policies and prediction models of the impact of subsequent waves of infection in these settings.


Subject(s)
COVID-19 , Immunoglobulin G , Humans , SARS-CoV-2 , Longitudinal Studies , Prevalence , Sierra Leone/epidemiology , Uganda/epidemiology , Democratic Republic of the Congo/epidemiology , COVID-19/epidemiology , Immunoglobulin M , Antibodies, Viral
11.
Biomedicines ; 11(3)2023 Mar 06.
Article in English | MEDLINE | ID: covidwho-2249010

ABSTRACT

The pandemic outbreak of human coronavirus is a global health concern that affects people of all ages and genders, but there is currently still no effective, approved and potential drug against human coronavirus, as many other coronavirus vaccines have serious side effects while the development of small antiviral inhibitors has gained tremendous attention. For this research, HE was used as a therapeutic target, as the spike protein displays a high binding affinity for both host ACE2 and viral HE glycoprotein. Molecular docking, pharmacophore modelling and virtual screening of 38,000 natural compounds were employed to find out the best natural inhibitor against human coronaviruses with more efficiency and fewer side effects and further evaluated via MD simulation, PCA, DCCR and MMGBSA. The lead compound 'Calceolarioside B' was identified on the basis of pharmacophoric features which depict favorable binding (ΔGbind -37.6799 kcal/mol) with the HE(5N11) receptor that describes positive correlation movements in active site residues with better stability, a robust H-bond network, compactness and reliable ADMET properties. The Fraxinus sieboldiana Blume plant containing the Calceolarioside B compound could be used as a potential inhibitor that shows a higher efficacy and potency with fewer side effects. This research work will aid investigators in the testing and identification of chemicals that are effective and useful against human coronavirus.

12.
Sci China Life Sci ; 2022 Nov 24.
Article in English | MEDLINE | ID: covidwho-2269192

ABSTRACT

Antibody therapeutics and vaccines for coronavirus disease 2019 (COVID-19) have been approved in many countries, with most being developed based on the original strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 has an exceptional ability to mutate under the pressure of host immunity, especially the immune-dominant spike protein of the virus, which is the target of both antibody drugs and vaccines. Given the continuous evolution of the virus and the identification of critical mutation sites, the World Health Organization (WHO) has named 5 variants of concern (VOCs): 4 are previously circulating VOCs, and 1 is currently circulating (Omicron). Due to multiple mutations in the spike protein, the recently emerged Omicron and descendent lineages have been shown to have the strongest ability to evade the neutralizing antibody (NAb) effects of current antibody drugs and vaccines. The development and characterization of broadly neutralizing antibodies (bNAbs) will provide broad strategies for the control of the sophisticated virus SARS-CoV-2. In this review, we describe how the virus evolves to escape NAbs and the potential neutralization mechanisms that associated with bNAbs. We also summarize progress in the development of bNAbs against SARS-CoV-2, human coronaviruses (CoVs) and other emerging pathogens and highlight their scientific and clinical significance.

13.
Diagnostics (Basel) ; 13(3)2023 Jan 31.
Article in English | MEDLINE | ID: covidwho-2225099

ABSTRACT

In order to identify corresponding amino acid sequences (pentapeptides) between the SPs, MPs and NPs of human coronaviruses and human autoantigens targeted in autoimmune endocrinopathies, and for a comparative analysis of the various coronaviruses proteome and the proteome of human, the original computer program was used. Quantitatively, SP, MP and NP of the human coronaviruses were found to share totally 117 minimal immune pentapeptide epitopes: 79 in SP, 14 in MP and 24 in NP, - with 18 autoantigens expressed by human endocrinocytes. The shared pentapeptides belong to the proteins of human endocrine cells. Samples of the pituitary, adrenal and thyroid from patients who died from coronavirus infection (COVID-19) were studied morphologically using histochemical methods. A high incidence of SARS-CoV-2 infection of endocrine cells was showed. The high affinity of SARS-CoV-2 the cells of the adenohypophysis was revealed, but there was no expression of viral proteins by the cells of the neurohypophysis. The foci of lesions in endocrine organs contained abundant lymphocytic infiltrates which may indicate the impact of autoimmune processes. Autoimmune disorders have a multi-faceted etiology and depend on polygenic predispose and additive action of many epigenetic and environmental factors causing hyperstimulation of imperfectly functioning immune system. It means that the phenomenon of molecular mimicry cannot be blamed as their single prerequisite, but it is just a tile in mosaic of autoimmunity. The facts revealed emphasize the need of endocrinological diagnostic alertness of a physician while observing patients with post-vaccination and post-COVID-19 health disorders.

14.
J Hosp Infect ; 134: 27-34, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2180542

ABSTRACT

BACKGROUND: Human coronaviruses (HCoVs) are important respiratory pathogens in humans and animals. Most HCoVs are emerging pathogens, with five known human pathogens identified in the last two decades. AIM: To examine the clinical course of HCoV infection in children to improve understanding of severity and outcomes. METHODS: A retrospective review was undertaken of all encounters of children with known HCoV infection at a tertiary paediatric hospital from January 2015 to January 2018. Electronic medical records were reviewed for demographic data, HCoV type, viral co-pathogens, time to testing, need for hospitalization, requirement for higher-level care (HLC) including intensive care unit management and requirement for oxygen support, radiographic findings suggestive of lower respiratory tract (LRT) disease, and length of stay (LOS). FINDINGS: In total, 450 encounters for 430 different patients were identified, with the majority (85%) being inpatient. OC43 was the most common HCoV. Younger patients (age <5 years) had higher probability of hospitalization [adjusted odds ratio (aOR) 2.2, 95% confidence interval (CI) 1.2-4.1], requirement for HLC (aOR 1.8, 95% CI 1.0-3.1) and presence of LRT findings on chest radiographs (aOR 1.7, 95% CI 1.01-2.9). Clinical outcomes did not differ between HCoV types, except LOS which was longer for 229E. Fifty-two (11%) encounters were detected after 3 days of hospitalization (median 25.5 days), suggesting possible nosocomial infection. CONCLUSION: HCoVs are important respiratory pathogens in the paediatric population, especially among patients aged <5 years who are at increased risk for severe disease. The role of HCoVs as hospital-acquired pathogens may be underappreciated.


Subject(s)
Coronavirus Infections , Respiratory Tract Infections , Child , Humans , Retrospective Studies , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Hospitals, Pediatric , Respiratory Tract Infections/epidemiology , Inpatients
15.
Int J Infect Dis ; 127: 11-16, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2179535

ABSTRACT

OBJECTIVES: Many regions of Africa have experienced lower COVID-19 morbidity and mortality than Europe. Pre-existing humoral responses to endemic human coronaviruses (HCoV) may cross-protect against SARS-CoV-2. We investigated the neutralizing capacity of SARS-CoV-2 spike reactive and nonreactive immunoglobulin (Ig)G and IgA antibodies in prepandemic samples. METHODS: To investigate the presence of pre-existing immunity, we performed enzyme-linked immunosorbent assay using spike antigens from reference SARS-CoV-2, HCoV HKU1, OC43, NL63, and 229E using prepandemic samples from Kilifi in coastal Kenya. In addition, we performed neutralization assays using pseudotyped reference SARS-CoV-2 to determine the functionality of the identified reactive antibodies. RESULTS: We demonstrate the presence of HCoV serum IgG and mucosal IgA antibodies, which cross-react with the SARS-CoV-2 spike. We show pseudotyped reference SARS-CoV-2 neutralization by prepandemic serum, with a mean infective dose 50 of 1: 251, which is 10-fold less than that of the pooled convalescent sera from patients with COVID-19 but still within predicted protection levels. The prepandemic naso-oropharyngeal fluid neutralized pseudo-SARS-CoV-2 at a mean infective dose 50 of 1: 5.9 in the neutralization assay. CONCLUSION: Our data provide evidence for pre-existing functional humoral responses to SARS-CoV-2 in Kilifi, coastal Kenya and adds to data showing pre-existing immunity for COVID-19 from other regions.


Subject(s)
COVID-19 , Immunoglobulin G , Humans , SARS-CoV-2 , Kenya/epidemiology , COVID-19/epidemiology , COVID-19 Serotherapy , Immunoglobulin A , Antibodies, Viral
16.
mBio ; 14(1): e0328722, 2023 02 28.
Article in English | MEDLINE | ID: covidwho-2193472

ABSTRACT

The impact of preexisting antibodies to the four endemic human coronaviruses (ehCoV) (229E, OC43, NL63, and HKU1) on severe (hospitalization) coronavirus disease 2019 (COVID-19) outcomes has been described in small cohorts. Many studies have measured ehCoV 229E, OC43, NL63, and HKU1 antibody levels weeks after recovery rather than in the first weeks of illness, which is more relevant to early hospitalizations. Antibody levels to the spike protein of the four coronaviruses (229E, OC43, NL63, and HKU1), as well as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), were measured both before and immediately after convalescent or control plasma transfusion in 51 participants who were hospitalized and 250 who were not hospitalized, as well as in 71 convalescent and 50 control plasma donors as a subset from a completed randomized controlled trial. In COVID-19 convalescent plasma donors, the ehCoV spike antibodies were 1.2 to 2 times greater than the control donor unit levels, while donor COVID-19 convalescent plasma (CCP) SARS-CoV-2 spike antibodies were more than 600 times the control plasma units. Plasma transfusion, whether COVID-19 convalescent or control, did not alter the post-transfusion antibody levels for the endemic human coronaviruses (229E, OC43, NL63, and HKU1) in those hospitalized and not hospitalized, despite the 1.2- to 2-fold elevation in donor COVID-19 convalescent plasma. There was no influence of prior antibody levels to 229E, OC43, NL63, and HKU1 or post-transfusion antibody levels on subsequent hospitalization. These data, from a well-controlled prospective randomized clinical trial, add evidence that antibodies to ehCoV do not significantly impact COVID-19 outcomes, despite the apparent back-boosting of some ehCoV after SARS-CoV-2 infection. IMPORTANCE The relevance of preexisting immunity to the four endemic human coronaviruses in the first week of COVID-19 illness on the outcome of COVID-19 progression stems from the high prevalence of the ehCoV and SARS-CoV-2 coronaviruses. The question has been raised of whether therapeutic convalescent plasma or control plasma containing ehCoV antibodies might alter the outcome of COVID-19 progression to hospitalization. Here, we observed that plasma transfusion did not significantly change the preexisting ehCoV antibody levels. In over 50 hospitalized participants and 250 nonhospitalized participants, ehCoV antibody levels were comparable, without statistical differences. Antibody levels were stable over the more than 12 months of the intervention trial, with individual heterogeneity similar in hospitalized and nonhospitalized participants. The ehCoV antibodies in plasma transfusion did not alter the recipient preexisting antibody levels nor hasten the COVID-19 progression to hospitalization in this clinical trial data.


Subject(s)
COVID-19 , Humans , COVID-19/therapy , SARS-CoV-2 , Prospective Studies , Blood Component Transfusion , COVID-19 Drug Treatment , Outpatients , Plasma , COVID-19 Serotherapy , Antibodies, Viral , Spike Glycoprotein, Coronavirus
17.
Jundishapur Journal of Microbiology ; 15(1):820-824, 2022.
Article in English | GIM | ID: covidwho-2124515

ABSTRACT

Our current research includes the possibility of controlling the ecosystem and using the disinfection method to protect from the impact of infection with the coronavirus, by relying on the evaporation mechanism by placing an amount of the Indian product (Easibreathe compounds) that consists of a mixture of disinfection materials used for the purposes of breathing and disinfection (Camphore, Chlorothymole, Eucalyptol, Menthol, Terpineol inhalation capsule). The process of controlling the ecosystem and the respiratory environment in public and private places is done by placing this product compound consisting of the aforementioned compounds in an evaporator(fumigator), that contains a normal amount of water and has an integrated system to raise the water temperature and a control mechanism for the stability of this temperature. There is also a mechanism to evaporate the water and push the volatile steam to the outside environment. This method works to completely eliminate the presence of the virus in the areas where this mechanism is carried out, in addition to it is the ideal method that is used to revitalize the respiratory system and prevent the continued presence of the virus in the airways that make up the respiratory system, starting from the nose and mouth down to the pulmonary alveoli, and alveoli sacs. In fact, this type of treatment leads to disruption of the virus when it enters the pulmonary alveoli, as it cleanses the internal environment of those alveoli, in addition to preventing viruses from attaching to the epithelial layer of the pulmonary alveoli. Consequently, the virus cannot complete its life cycle inside the respiratory system and eliminate it and completely remove it.

18.
Front Microbiol ; 13: 1035044, 2022.
Article in English | MEDLINE | ID: covidwho-2142120

ABSTRACT

MicroRNAs (miRNAs) can repress viral replication by targeting viral messenger RNA (mRNA), which makes them potential antiviral agents. The antiviral effects of miRNAs on infectious viruses have been explored extensively; however, recent studies mainly considered the action modes of miRNAs, neglecting another key factor, the molecular biology of viruses, which may be particularly important in the study of miRNA actions against a given virus. In this paper, the action modes of miRNAs and the molecular biology of viruses are jointly considered for the first time and based on the reported roles of miRNAs on viruses and human coronaviruses (HCoVs) molecular biology, the general and specific interaction modes of miRNAs-HCoVs are systematically reviewed. It was found that HCoVs transcriptome is a nested set of subgenomic mRNAs, sharing the same 5' leader, 3' untranslated region (UTR) and open reading frame (ORF). For a given HCoV, one certain miRNA with a target site in the 5' leader or 3' UTR has the potential to target all viral mRNAs, indicating tremendous antiviral effects against HCoVs. However, for the shared ORFs, some parts are untranslatable attributed to the translation pattern of HCoVs mRNA, and it is unknown whether the base pairing between the untranslated ORFs and miRNAs plays a regulatory effect on the local mRNAs where the untranslated ORFs are located; therefore, the regulatory effects of miRNAs with targets within the shared ORFs are complicated and need to be confirmed. Collectively, miRNAs may bepromising antiviral agents against HCoVs due to their intrinsically nested set of mRNAs, and some gaps are waiting to be filled. In this review, insight is provided into the exploration of miRNAs that can interrupt HCoVs infection.

19.
Molecules ; 27(23)2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-2143395

ABSTRACT

Almost one-third of all infectious diseases are caused by viruses, and these diseases account for nearly 20% of all deaths globally. It is becoming increasingly clear that highly contagious viral infections pose a significant threat to global health and economy around the world. The need for innovative, affordable, and safe antiviral therapies is a must. Zinc oxide nanoparticles are novel materials of low toxicity and low cost and are known for their antiviral activity. The genus Pelargonium was previously reported for its antiviral and antimicrobial activity. In this work, Pelargonium zonale leaf extract chemical profile was studied via high-performance liquid chromatography (HPLC) and was used for the biosynthesis of zinc oxide nanoparticles. Furthermore, the antiviral activity of the combination of P. zonale extract and the biosynthesized nanoparticles of ZnO against the human corona 229E virus was investigated. Results revealed that ZnONPs had been biosynthesized with an average particle size of about 5.5 nm and characterized with UV, FTIR, TEM, XRD, and SEM. The antiviral activity showed significant activity and differences among the tested samples in favor of the combination of P. zonale extract and ZnONPs (ZnONPs/Ex). The lowest IC50, 2.028 µg/mL, and the highest SI, 68.4 of ZnONPs/Ex, assert the highest antiviral activity of the combination against human coronavirus (229E).


Subject(s)
Metal Nanoparticles , Nanoparticles , Pelargonium , Viruses , Zinc Oxide , Humans , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Antiviral Agents/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Nanoparticles/chemistry , Metal Nanoparticles/chemistry
20.
Viruses ; 14(12)2022 11 22.
Article in English | MEDLINE | ID: covidwho-2123867

ABSTRACT

With the emergence of SARS-CoV-2, routine surveillance combined with sequence and phylogenetic analysis of coronaviruses is urgently required. In the current study, the four common human coronaviruses (HCoVs), OC43, NL63, HKU1, and 229E, were screened in 361 clinical samples collected from hospitalized children with respiratory symptoms during four winter seasons. RT-PCR-based detection and typing revealed different prevalence rates of HCoVs across the four seasons. Interestingly, none of the four HCoVs were detected in the samples (n = 100) collected during the winter season of the COVID-19 pandemic. HCoV-OC43 (4.15%) was the most frequently detected, followed by 229E (1.1%). Partial sequences of S and N genes of OC43 from the winter seasons of 2015/2016 and 2021/2022 were used for sequence and phylogenetic analysis. Multiple sequence alignment of the two Saudi OC43s strains with international strains revealed the presence of sequence deletions and several mutations, of which some changed their corresponding amino acids. Glycosylation profiles revealed a number of O-and N-glycosylation sites in both genes. Based on phylogenetic analysis, four genotypes were observed with Riyadh strains grouped into the genotype C. Further long-term surveillance with a large number of clinical samples and sequences is necessary to resolve the circulation patterns and evolutionary kinetics of OC43 in Saudi Arabia.


Subject(s)
COVID-19 , Coronavirus OC43, Human , Respiratory Tract Infections , Humans , Child , Phylogeny , Coronavirus OC43, Human/genetics , Saudi Arabia/epidemiology , Prevalence , Pandemics , COVID-19/epidemiology , SARS-CoV-2/genetics , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL